

PLAINS CO₂ REDUCTION PARTNERSHIP: BELL CREEK FIELD PROJECT

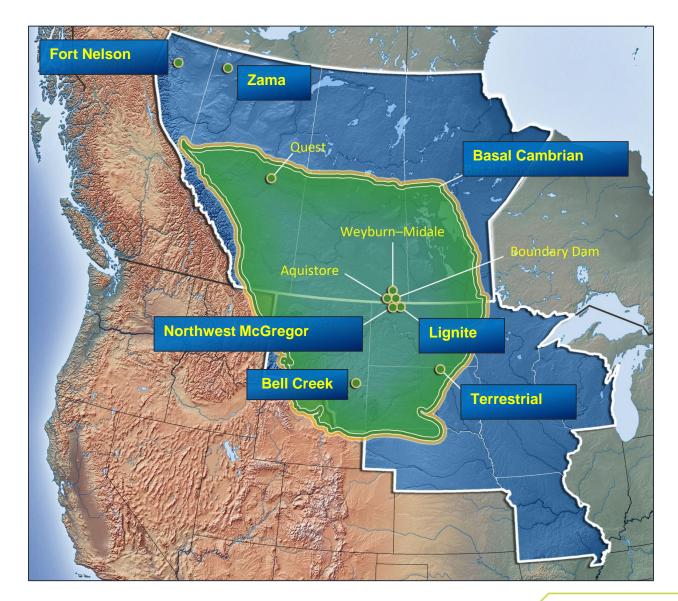
DE-FC26-05NT42592

Mastering the Subsurface Through Technology Innovation & Collaboration: Carbon Storage & Oil & Natural Gas Technologies Review Meeting August 18, 2016

> Charles Gorecki, Director of Subsurface R&D Energy & Environmental Research Center

> > Critical Challenges.

PRESENTATION OUTLINE

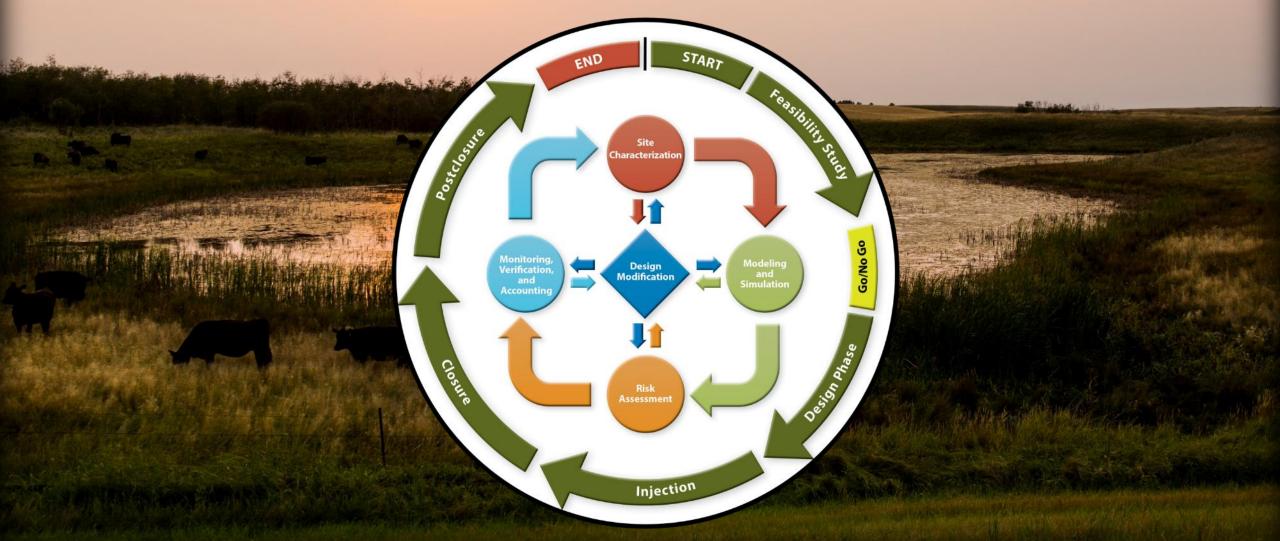

- PCOR Partnership
- Enhanced oil recovery and associated CO₂ storage
- Bell Creek project
- Aquistore project
- Outreach activities
- Best practices manuals
- Summary

PCOR PARTNERSHIP

- Region includes:
 - Nine states
 - Four Canadian provinces
 - 1,382,089 mi²
- Two active demonstration projects:
 - Bell Creek project
 - Aquistore project
- More than 100 partners

Critical Challenges.

PCOR PARTNERSHIP



PCOR PARTNERSHIP

PCOR PARTNERSHIP'S INTEGRATED ADAPTIVE MANAGEMENT APPROACH

• Focused on site characterization, modeling and simulation, and risk assessment to guide monitoring, verification, and accounting (MVA) strategy.

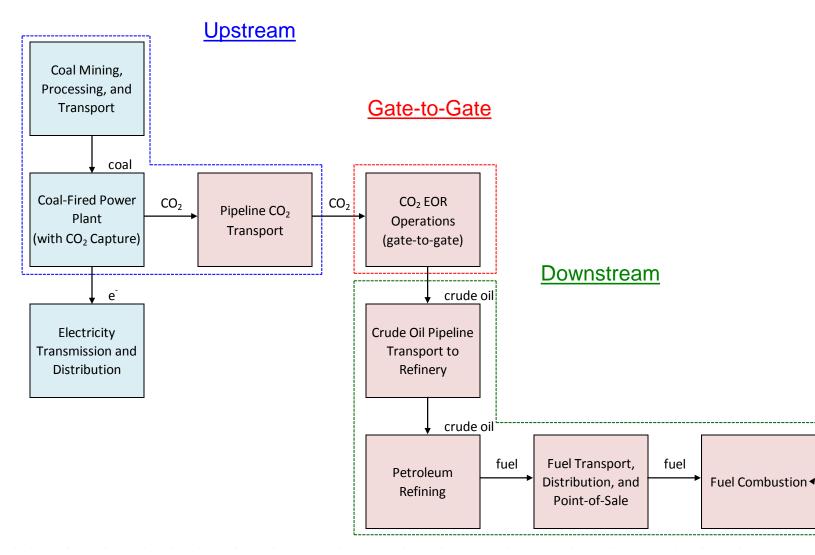
PCOR PARTNERSHIP OBJECTIVES

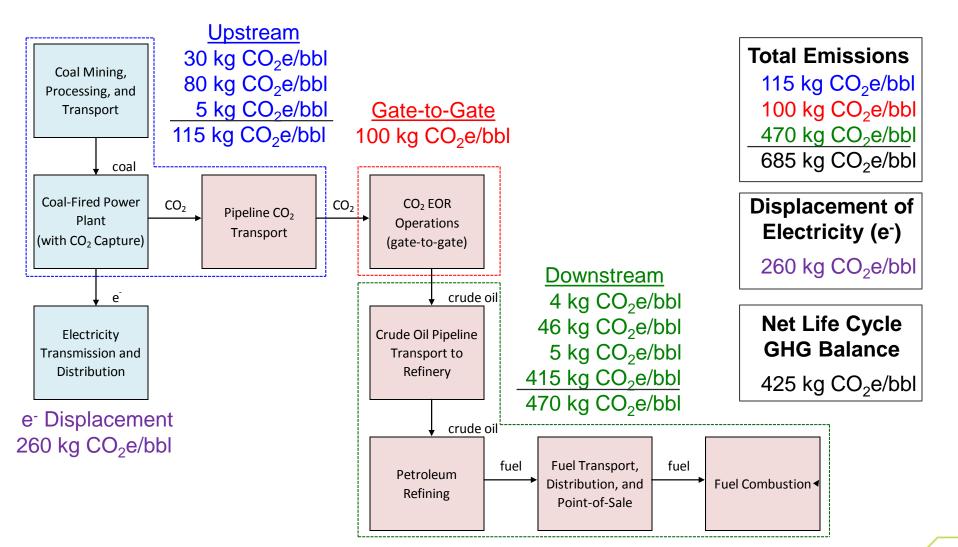
- Safely and permanently achieve CO₂ storage on a commercial scale in conjunction with enhanced oil recovery (EOR).
- Demonstrate that oil-bearing formations are viable sinks with significant storage capacity to help meet near-term CO₂ storage objectives.
- Establish MVA methods to safely and effectively monitor CO₂ storage.
- Use commercial oil/gas practices as the backbone of the MVA strategy, and augment with additional cost-effective techniques.
- Estimate the CO₂ storage resource potential in saline formations and hydrocarbon reservoirs in the PCOR Partnership Region.
- Serve as a knowledge hub to support in the future deployment of CCUS projects in the region. "Regional Vision"

CO₂ EOR

- A great near-term storage option:
- Over 40 years of handling and injecting large volumes of CO₂.
- Much of the infrastructure already in place.
- Storage cost can be offset by income from EOR.

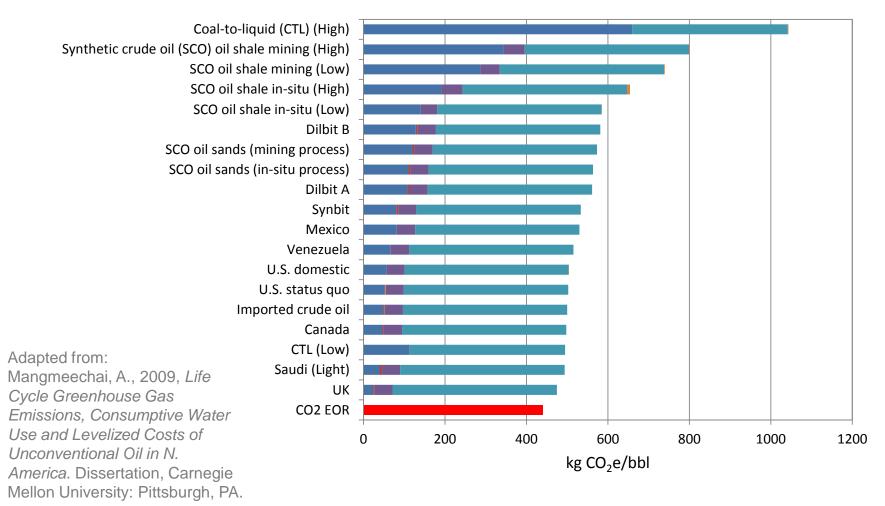
"Greener" than conventionally produced oil:


- Existing EOR operations are already storing CO_2 .
- Nearly every tonne of CO₂ purchased is eventually stored.


SYSTEM MODEL CAPTURES UPSTREAM, GATE-TO-GATE, AND DOWNSTREAM

Critical Challenges. Pr

SYSTEM MODEL CAPTURES UPSTREAM, GATE-TO-GATE, AND DOWNSTREAM


Critical Challenges. Pra

COMPARING CO₂ EOR TO "REGULAR" OIL

Extraction

■ Port-to-refinery ■ Refinery ■ Combustion

n 🛛 📕 Upstream electricity

JOURNAL ARTICLE

International Journal of Greenhouse Gas Control 51 (2016) 369-379

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

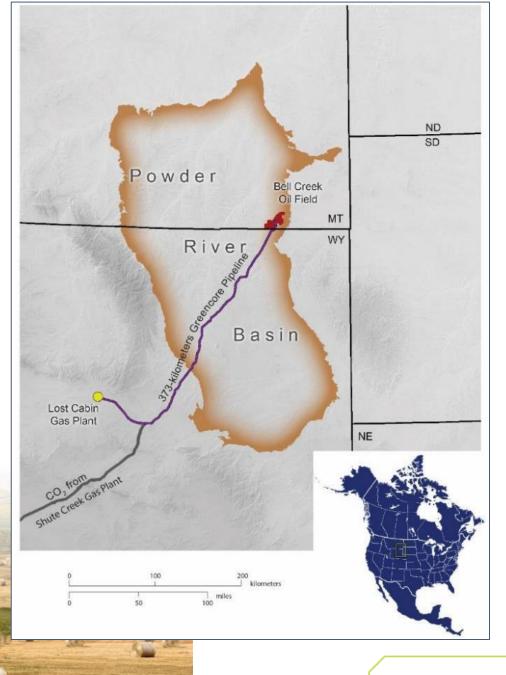
How green is my oil? A detailed look at greenhouse gas accounting for O_2 -enhanced oil recovery (O_2 -EOR) sites

Gas Cor

Nicholas A. Azzolina^{a,*}, Wesley D. Peck^b, John A. Hamling^b, Charles D. Gorecki^b, Scott C. Ayash^b, Thomas E. Doll^c, David V. Nakles^d, L. Stephen Melzer^e

^a The CETER Group, Inc., 1027 Faversham Way, Green Bay, WI 54313, USA
^b Energy & Environmental Research Center, University of North Dakota, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018, USA
^c Energy & Environmental Research Center, University of North Dakota, P.O. Box 929, Evansville, WY 82636-0929, USA
^d The CETER Group, Inc., 4952 Oakhurst Avenue, Gibsonia, PA 15044, USA
^e Melzer Consulting, 415 West Wall, Suite 1106, Midland, TX 79701, USA

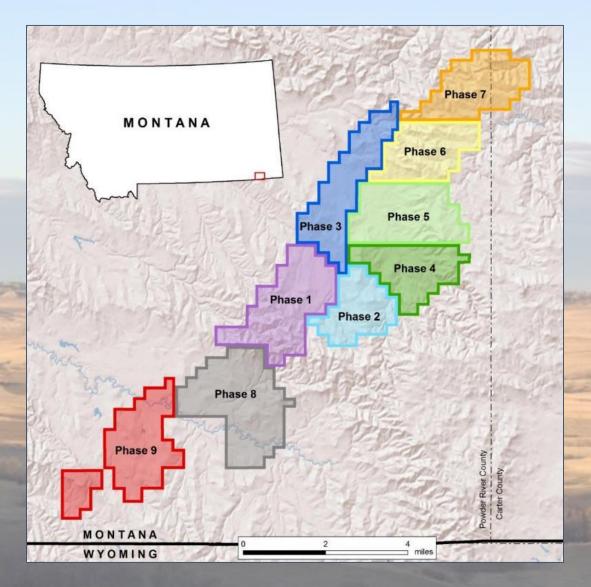
http://www.sciencedirect.com/science/article/pii/S1750583616302985

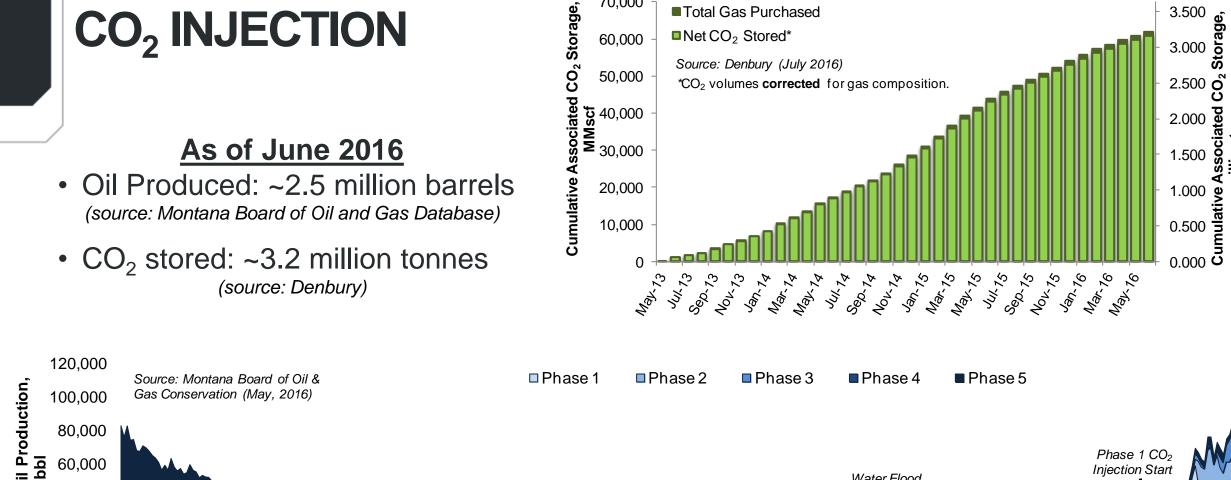

The spreadsheet CO₂ EOR life cycle analysis model is available on the PCOR Partnership public Web site!

PCQR Partnership	Plains	CO ₂ Reduct	ion (PCOR) P	artnership	n			
PARTNERS ONLY	KIDS	EDUCATORS	CONTACT US	search	٩			
out the Partnership	CO ₂ EOR LO	CA Model						
mate, CO ₂ , Sequestration gional Storage Potential ₂ Sequestration Projects	The PCOR Partnership performed a life cycle analysis (LCA) to estimate the greenhouse gas emissions associated with oil produced via CO ₂ EOR, including comparing the results to conventional oil. The results were published in the <i>International Journal of Greenhouse Gas Control</i> . A spreadsheet-based model developed through this work allows users to input their own site-specific values for							
chnical Publications Technical Reports Technical Posters	conducting the a	nalysis.	ownload the model	s to input their own sit				
CO ₂ EOR LCA Model PDM Video								
sources	Article Title: How Green Is My Oil? A Detailed Look at Greenhouse Gas Accounting for CO ₂ Enhanced							
cumentaries	Oil Recovery	(CO ₂ EOR) Sites						
leo Clip Library	Abstract: This study presents the results of a detailed life cycle analysis of greenhouse gas (GHG) emissions associated with carbon dioxide enhanced oil recovery (CO_2 EOR) where the CO_2 is sourced							
Ωs	from a coal	fired power plant. This w	ork builds upon previous ir	vestigations and integr	ates new			
ks usehold Energy	system mod case model emissions fr CO2e/bbl (C 685 kg CO2e resulting dis 438 kg CO2e (~500 kg CC on the CO2 CO2e/bbl ar power plant conundrum,	lel includes three segmen using Ryan-Holmes gas s rom upstream, gate-to-ga O ₂ equivalents per barrel a/bbl. However, these em splacement credit of U.S. a/bbl. Therefore, CO ₂ EOR O ₂ e/bbl). Optimization sce capture rate and net CO ₂ e achievable. Based on th provides one potential m by simultaneously produc	a ranges for CO ₂ storage in ts: upstream, gate-to-gate eparation technology for th te, and downstream proces of incremental oil produce issions are offset by CO ₂ s grid electricity, which resu t produces oil with a lower enarios are presented that utilization and suggest that utilization and suggest that ness results, CO ₂ EOR wher eans for addressing the en cing electricity and oil to m	, and downstream proce are CO_2 EOR site determine sees to be 117, 98, and d), respectively, for tot torage in the reservoir lts in a net life cycle en emission factor than co define a performance en tower emission factors are the CO_2 is sourced fri- ergy demand-climate c	esses. Our base ined the 470 kg tal emissions of and the nission factor of onventional oil nvelope based s below 300 kg om a coal-fired change			
	View the journal	IG emissions to abate glol article here.	bar warming.					

http://www.undeerc.org/pcor/technicalpublications/CO2-EOR-Life-Cycle-Analysis.aspx

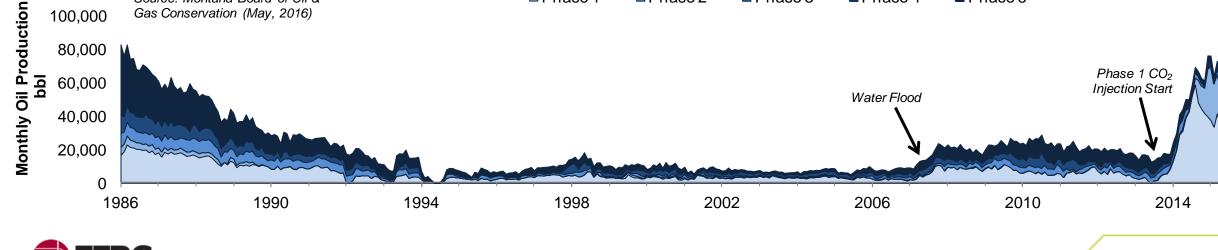
BELL CREEK PROJECT OVERVIEW


- Operated by Denbury Onshore LLC.
- CO₂ is sourced from ConocoPhillips' Lost Cabin natural gas-processing plant and Exxon's Shute Creek gasprocessing plant.
- The EERC, through the PCOR Partnership, is studying CO₂ storage associated with the commercial CO₂ EOR project.


Critical Challenges. Practical Solutions.

BELL CREEK FIELD

- Phased development.
- Primary production and waterflooding produced ~37.5% original oil in place (OOIP)
- CO₂ EOR is under way in Phases 1–5.



- An estimated 40–50 million incremental bbl of oil will be recovered.
- An estimated 12.7 million tonnes of CO₂ will be stored.

70,000

Total Gas Purchased

3.500

nillion tonn

BELL CREEK – SITE CHARACTERIZATION

Properties:

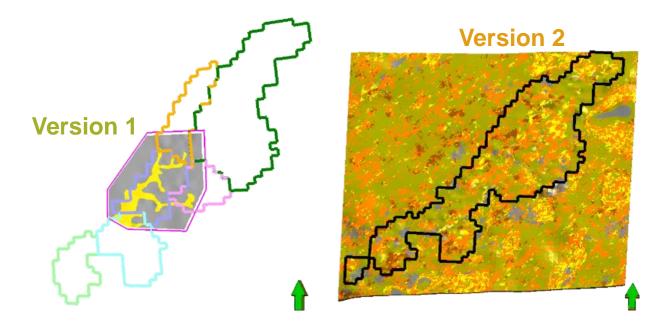
- Cretaceous Muddy Sandstone Formation
- Nearshore marine/strand plain (barrier bars)
- Approximately 1311–1371-m (4300–4500-ft) depth
- Overlain by more than 914 m (3000 ft) of siltstones and shales
- Average thickness 9–14 m (30–45 ft)
- Average porosity range
 - 25%-35%
- Average permeability range
 - 150-1175 mD

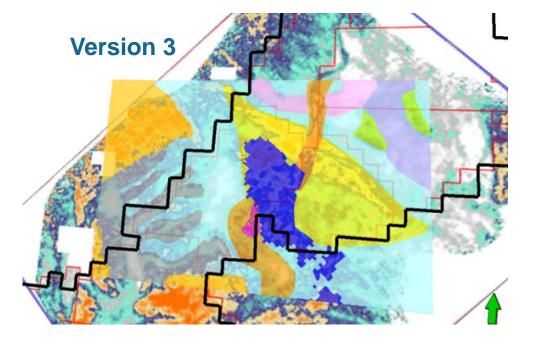
Age Units		Seals, Sinks, and USDW*	Powder River Basin	
U	Quaternary	USDW		
Cenozoic	Tertiary	USDW	Fort Union Fm	
		USDW	Hell Creek Fm	
		USDW	Fox Hills Fm	
zoic		Upper Seal	Bearpaw Fm Judith River Fm Claggett Fm Eagle Fm Telegraph Creek Fm	
Mesozoic	Cretaceous	Upper Seal	Niobrara Fm	
			Carlile Fm	
			Greenhorn Fm	
		Upper Seal	Belle Fourche Fm	
		Upper Seal Sink	Mowry Fm	
		Lower Seal	Mowry Fm Muddy Fm Skull Creek Fm	

*USDW = Underground Source of Drinking Water

MODEL REFINEMENT

Version 1 (2009-2012)

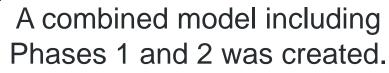

- Phase 1 geomodel
- Simulation model
 - Phase 1 history-matched (pre-CO₂) and performance forecasts

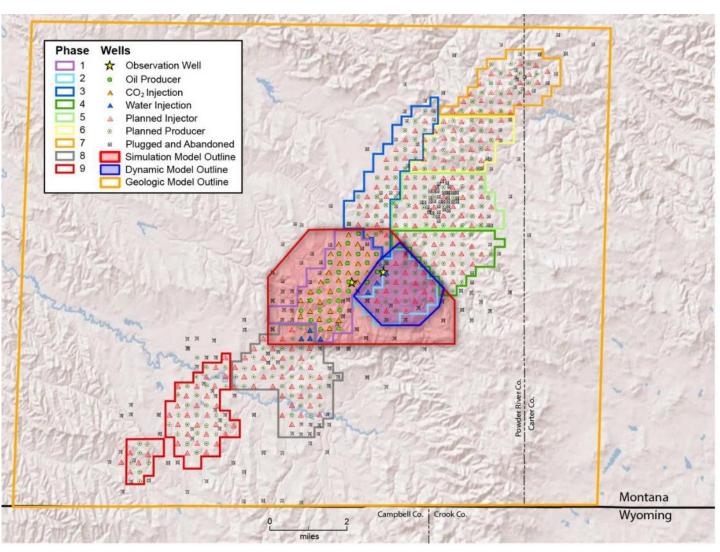

Version 2 (2012-2015)

- Full-field geomodel
 - Electrofacies
- Phases 1 and 2 history-matched and performance forecasts

Version 3 (under development)

- Geobody interpretations and facies model
 - Trained with seismic data, logs, and core
 - Multiple-point statistics to populate facies with realistic heterogeneity
- Phases 1–4 history-matched and performance forecasts (pending)



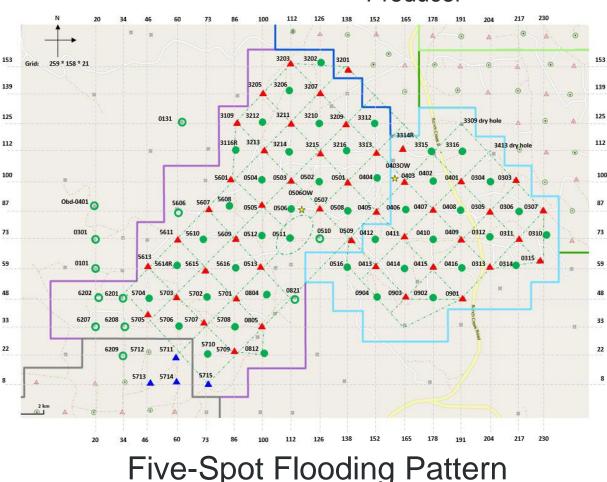

SIMULATION MODELS – COMBINED

Challenge

- Phase 1 and 2 models assumed no flow between phases.
- Material balance in Phase 2 showed injection water flowing from Phase 2 to Phase 1.
- Time-lapse seismic data showed possible fluid connection between them.

Response

Critical Challenges.

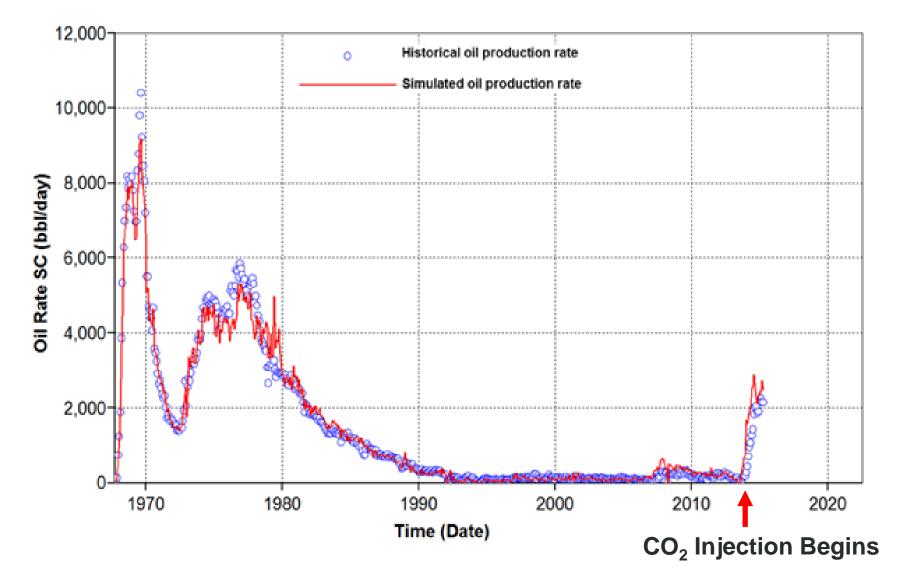


SIMULATION MODELS – WELL DISTRIBUTION

102 wells in the combined model: **Phase 1 Area:** 26 producers, 27 injectors

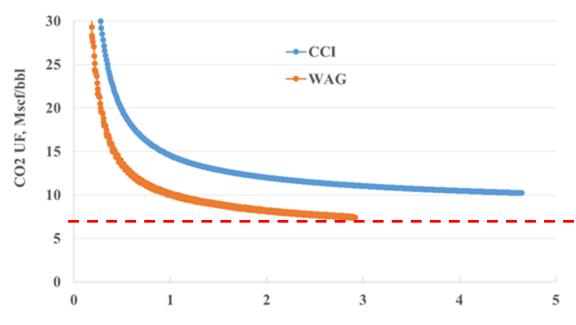
Phase 2 Area:17 producers,18 injectors

Surrounding Area: Ten producers, four injectors



- Pure Water Injector
 - Producer

HISTORY MATCH RESULTS



CO₂ UTILIZATION FACTOR

- CO₂ utilization factor (amount of CO₂ needed to produce 1 bbl of oil):
 - Water alternating gas (WAG): 10 mscf/bbl after 1 HCPVI, 7 mscf/bbl after 3 HCPVI
 - Continuous CO₂ injection (CCI): >10 mscf/bbl even after 4 HCPVI

Conclusion: WAG requires less CO_2 than CCI to produce the same amount of oil. In agreement with other CO_2 EOR projects.*

Volume injected, HCPVI

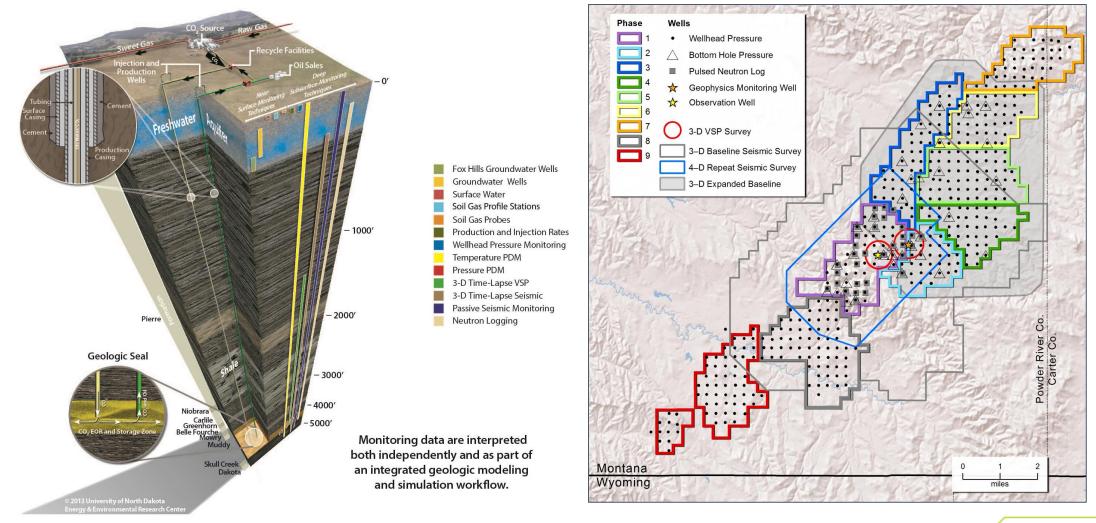
*Azzolina, N.A., Nakles, D.V., Gorecki, C.D., Peck, W.D., Ayash, S.C., Melzer, L.S., and Chatterjee, S., 2015, CO₂ storage associated with CO₂ enhanced oil recovery—a statistical analysis of historical operations: International Journal of Greenhouse Gas Control, v. 37, p. 384–397.

Critical Challenges. Pr

WHAT ARE THE EFFECTS OF SMALL AMOUNT OF CH_4 (1%~4%) IN THE PRODUCED CO_2 ?

Vanishing interfacial tension (VIT) methods were used to measure minimum miscibility pressure (MMP) as CH_4 mole percentage increases from 0 to 100% in the solvent phase (T = 42°C).

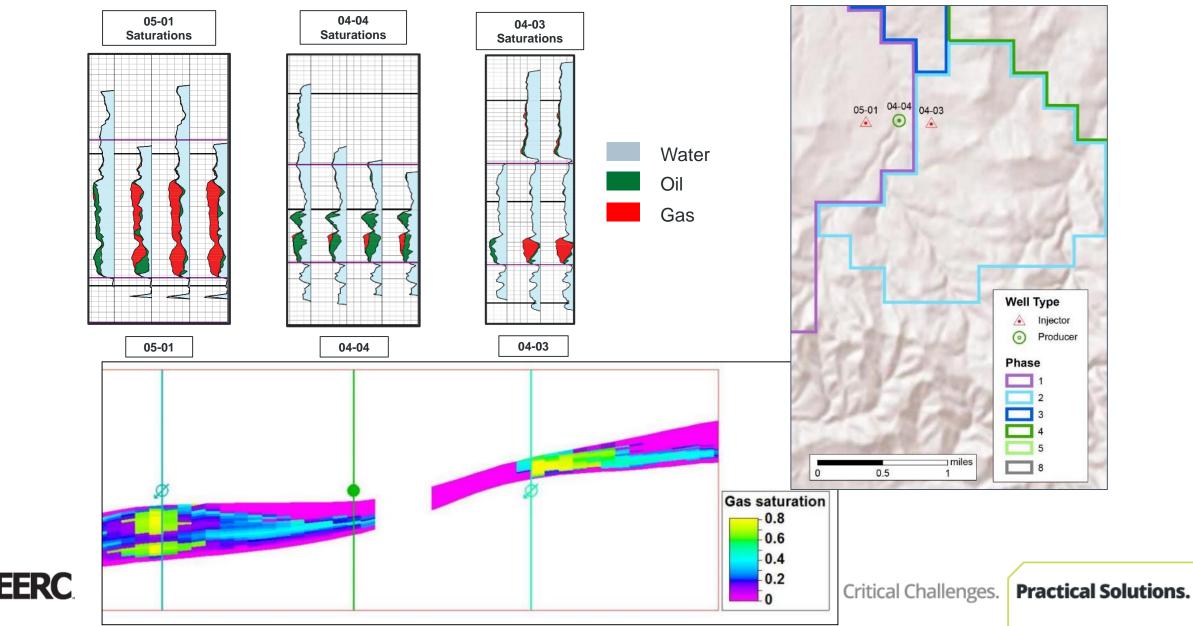
Miscible flooding is still reachable when CH_4 is less than 36% and reservoir pressure is above 2500 psi.

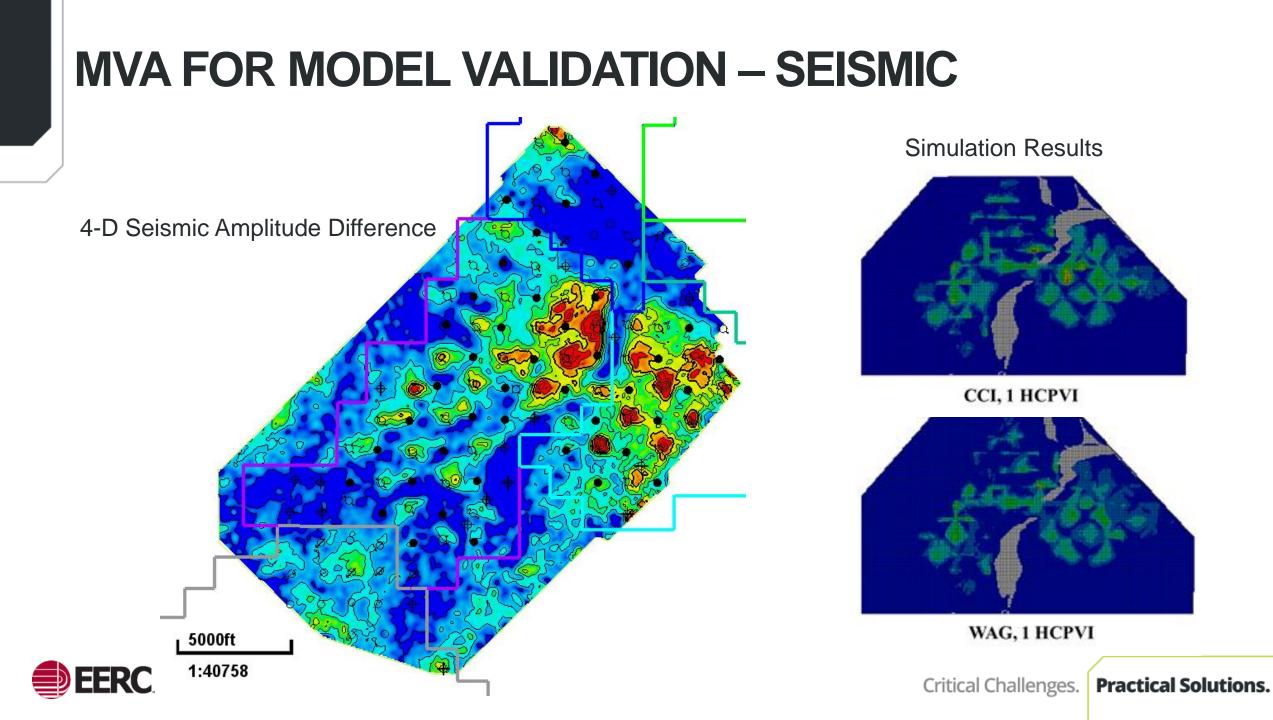

4500 y = 28.749x + 1373.24000 $R^2 = 0.9858$ 3500 3000 MMP, psi 2500 2000 1500 1000 500 20 40 60 80 100 CH4 mole %

Hawthorne, S.B., Miller, D.J., Jin, L., and Gorecki, C.D., 2016, Rapid and simple capillary-rise/vanishing interfacial tension method to determine crude oil minimum miscibility pressure—pure and mixed CO₂, methane, and ethane: Energy & Fuels, <u>http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.6b01151</u>.

EERC

Critical Challenges. Practical Solutions.

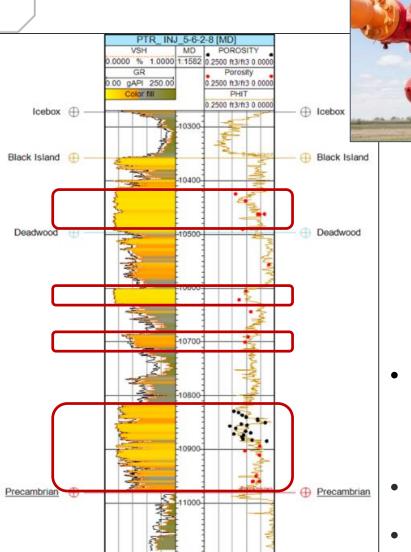

BELL CREEK – OPERATIONAL MVA



EERC

Critical Challenges. Pra


MVA FOR MODEL VALIDATION – PULSED-NEUTRON LOGGING

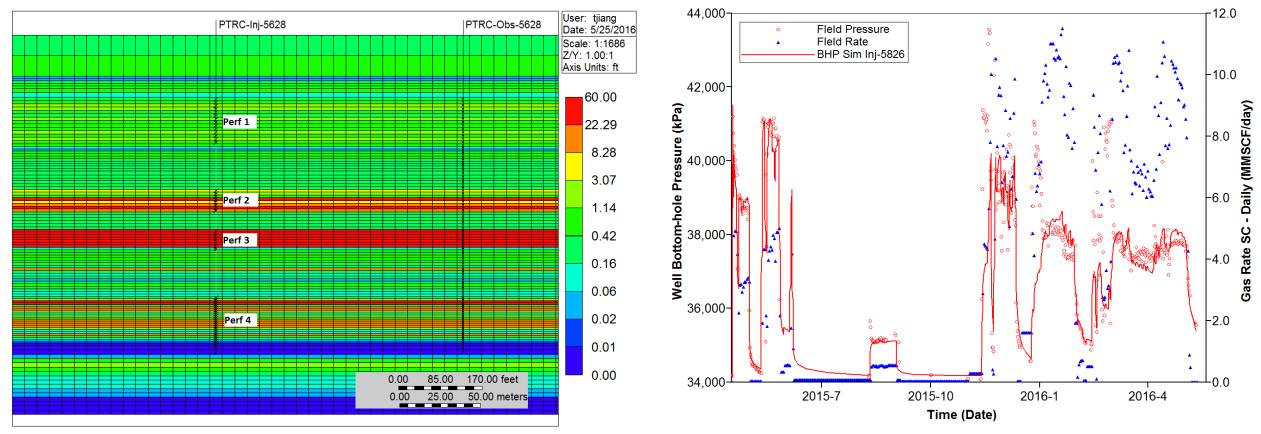


AQUISTORE PROJECT

- Injection of CO₂ from the Boundary Dam Power Station in southeastern Saskatchewan began in April 2015.
- Most CO₂ captured at Boundary Dam is used for EOR; Aquistore serves as buffer storage for excess CO₂.
- PCOR Partnership activities include:
 - Core analysis.
 - Static and dynamic modeling.
 - Public outreach.
 - Participation in Aquistore Science and Engineering Research Council (SERC).

AQUISTORE **INJECTION**

SaskPower (Sptrc

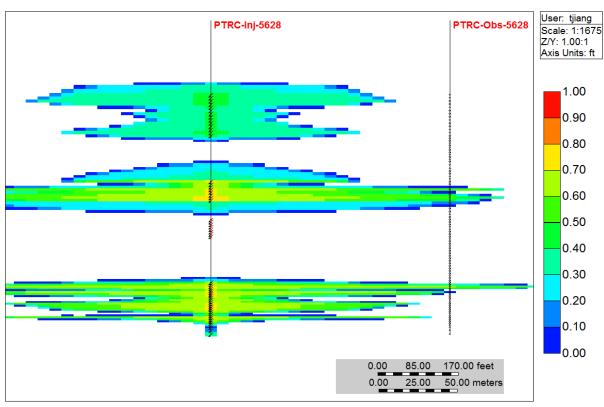


- Target saline formations:
 - Deadwood and Black Island Formations ~3200 m (10,500 ft) deep, >50 m (>150 ft) thick.
- ~75,000 tonnes of CO_2 injected (August 4, 2016)
- Injection rate of 350–550 tonnes/day Critical Challenges.

HISTORY MATCH

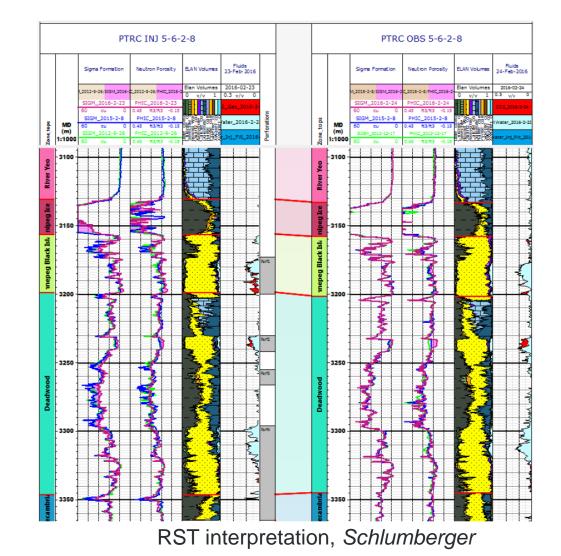
- Injection data are being used to history-match in near-real time.
- MVA field activities are being used to validate the models.

Permeability I (md) 2015-04-16 I layer: 44



AQUISTORE

May 2016:


 CO₂ plume prediction: Plume reached the observation well (~68,000 tonnes cumulative injection).

Gas Saturation 2016-05-11 | layer: 44

February 2016:

• CO₂ breakthrough was observed in second perforation interval at observation well.

PCOR PARTNERSHIP OUTREACH ACTIVITIES

In development:

- Atlas: 5th Edition
- Documentaries
 - Coal and the Modern Age
 - Bell Creek Story

PCOR

BEST PRACTICES MANUALS

- Participated in updating several DOE best practices manuals (BPMs)
 - Site characterization
 - Risk assessment/simulation
 - MVA
 - Operations
 - Outreach
- PCOR Partnership BPMs (in development)
 - Adaptive management approach
 - Site characterization
 - MVA
 - Risk assessment
 - Modeling and simulation

SUMMARY

- CO₂ EOR produces oil while also storing CO₂. Nearly all the CO₂ purchased for EOR is eventually stored.
- CO₂ storage associated with commercial CO₂ EOR is being investigated at the Bell Creek project. Over 3.2 million metric tons of associated CO₂ storage as of June 2016.
- CO₂ is being injected into a saline formation at Aquistore as buffer storage for CO₂ produced from a coal-fired electricity-generating facility.
- Characterization activities indicate the PCOR Partnership region has incredible potential for CO₂ storage in saline formations and through CO₂ EOR.
- Outreach activities and complementary projects continue to support the PCOR Partnership Program.

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FC26-05NT42592.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Critical Challenges. Practical Solutions.

CONTACT INFORMATION

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org

701.777.5355 (phone) 701.777.5181 (fax)

Charles Gorecki Director of Subsurface R&D cgorecki@undeerc.org

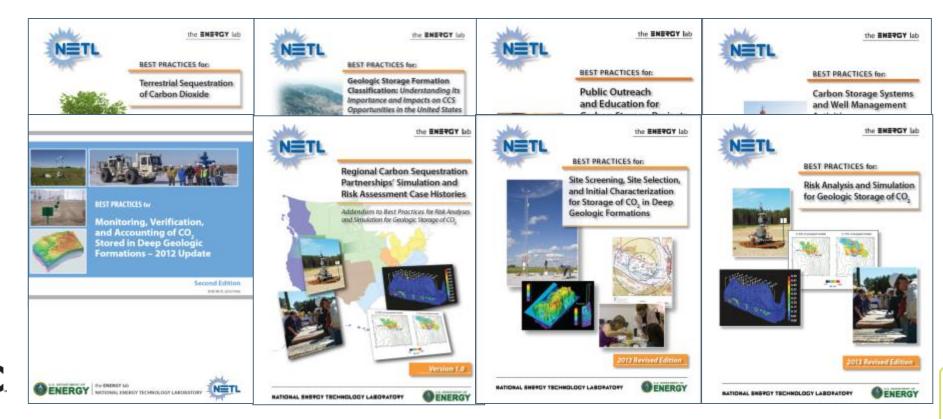
THANK YOU!

Critical Challenges. Practical Solutions.

BENEFIT TO THE PROGRAM

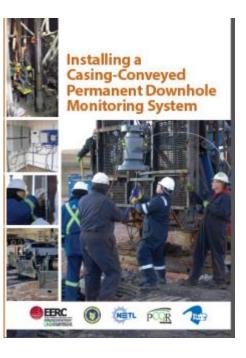
- Develop technologies that will support the industry's ability to predict carbon dioxide (CO₂) storage capacity in geologic formations to within ±30%:
 - Conducting pilot tests and demonstration projects in hydrocarbon reservoirs, saline formations, and coal seams to study sweep and storage efficiency in each project.
 - Evaluating multiple oil fields, saline formations, and coal seams in the Plains CO₂ Reduction (PCOR) Partnership region, and estimating volumetric and dynamic storage resource through characterization and simulation.
 - Sharing lessons learned from our projects, with the other partnerships and participating in all Regional Carbon Sequestration Partnership (RCSP) Storage Capacity working groups.
 - Conducting complementary projects that utilize the lessons learned from PCOR Partnership projects to improve the methodologies used to estimate CO₂ storage resource in saline formations and hydrocarbon reservoirs.
 - Joint IEA Greenhouse Gas R&D Programme (IEAGHG) and U.S. Department of Energy (DOE) project Development of Storage Coefficients for Carbon Dioxide Storage in Deep Saline Formations, Report No. 2009/13 (completed 2009)
 - DOE project Optimizing and Quantifying CO₂ Storage Capacity/Resource in Saline Formations and Hydrocarbon Reservoirs (active 2012–2015)
 - Joint IEAGHG and DOE project CO₂ Storage Efficiency in Deep Saline Formations (active 2013–2014)

Critical Challenges. Practical Solutions.


BENEFIT TO THE PROGRAM (con't)

- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness:
 - Testing new techniques or combining techniques to better account for injected CO₂ in the demonstration tests.
 - Evaluating different injection strategies through simulation and field activities to determine the optimal strategies for both improving storage efficiency and hydrocarbon recovery, with commercial partner Denbury Onshore LLC (Denbury) providing all resources for CO₂ injection.
- Develop and validate technologies to ensure 99% storage permanence:
 - Developing and implementing an adaptive management approach to project management that integrates site characterization, modeling, risk assessment, and monitoring, verification, and accounting (MVA) throughout a project's life.
 - Evaluating the existing technologies used to monitor, verify, and account for the injected CO₂ to determine detection limits and the ability to meet the RCSP Program goals.
 - Testing new techniques or combining techniques to better account for injected CO₂ in the demonstration tests.

BENEFIT TO THE PROGRAM (con't)


- Develop best practices manuals (BPMs) for MVA and assessment; site screening, selection, and initial characterization; public outreach; well management activities; and risk analysis and simulation:
 - Contributed technical expertise and lessons learned in the development of all the RCSP BPMs created to date.

BENEFIT TO THE PROGRAM (con't)

- The PCOR Partnership will develop several BPMs throughout the course of the program, including the following:
 - ◆ Bell Creek Test Site Site Characterization (9/30/2014)
 - ♦ Bell Creek Test Site Simulation (8/31/2016)
 - Bell Creek Test Site Monitoring for CO₂ Storage and CO₂ Enhanced Oil Recovery (EOR) (9/30/2017)
 - Fort Nelson Test Site Feasibility Study (6/30/2014)
 - The Nexus of Water and Carbon Sequestration Activities (11/30/2016)
 - Permitting (9/30/2017)
- Developed a videographic BPM entitled "Installing a Casing-Conveyed Permanent Downhole Monitoring (PDM) System" (draft under review).

SYNERGY OPPORTUNITIES

• Knowledge sharing, especially lessons learned, will help guide the creation of best practices for deploying commercial-scale CCS.

BIBLIOGRAPHY

Azzolina, N.A., Peck, W.D., Hamling, J.A., Gorecki, C.D., Ayash, S.C., Doll, T.E., Nakles, D.V., and Melzer, L.S., 2016, How green is my oil? a detailed look at greenhouse gas accounting for CO_2 -enhanced oil recovery (CO_2 -EOR) sites: International Journal of Greenhouse Gas Control, v. 51, p. 369–379.

Hawthorne, S.B., Miller, D.J., Jin, L., and Gorecki, C.D., 2016, Rapid and simple capillaryrise/vanishing interfacial tension method to determine crude oil minimum miscibility pressure pure and mixed CO₂, methane, and ethane: Energy & Fuels, <u>http://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.6b01151</u>.

Levine, J.S., Fukai, I., Soeder, D.J., Bromhal, G., Dilmore, R.M., Guthrie, G.D., Rodosta, T.D., Sanguinito, S., Frailey, S., Gorecki, C.D., Peck, W.D., and Goodman, A.L., 2016, U.S. DOE NETL methodology for estimating the prospective CO₂ storage resource of shales at the national and regional scale: International Journal of Greenhouse Gas Control, v. 51, p. 81–94.

Critical Challenges. Practical Solutions.

Critical Challenges. **Practical Solutions.**